3.651 \(\int \frac{x^2}{\left (a+b x^4\right ) \sqrt{c+d x^4}} \, dx\)

Optimal. Leaf size=656 \[ \frac{\sqrt{-\frac{b c-a d}{\sqrt{-a} \sqrt{b}}} \tan ^{-1}\left (\frac{x \sqrt{-\frac{b c-a d}{\sqrt{-a} \sqrt{b}}}}{\sqrt{c+d x^4}}\right )}{4 (b c-a d)}+\frac{\sqrt{\frac{b c-a d}{\sqrt{-a} \sqrt{b}}} \tan ^{-1}\left (\frac{x \sqrt{\frac{b c-a d}{\sqrt{-a} \sqrt{b}}}}{\sqrt{c+d x^4}}\right )}{4 (b c-a d)}-\frac{\sqrt [4]{c} \sqrt [4]{d} \left (\sqrt{c}+\sqrt{d} x^2\right ) \sqrt{\frac{c+d x^4}{\left (\sqrt{c}+\sqrt{d} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac{1}{2}\right )}{2 \sqrt{c+d x^4} (a d+b c)}-\frac{\left (\sqrt{c}+\sqrt{d} x^2\right ) \sqrt{\frac{c+d x^4}{\left (\sqrt{c}+\sqrt{d} x^2\right )^2}} \left (\sqrt{b} \sqrt{c}-\sqrt{-a} \sqrt{d}\right ) \Pi \left (\frac{\left (\sqrt{b} \sqrt{c}+\sqrt{-a} \sqrt{d}\right )^2}{4 \sqrt{-a} \sqrt{b} \sqrt{c} \sqrt{d}};2 \tan ^{-1}\left (\frac{\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac{1}{2}\right )}{8 \sqrt{b} \sqrt [4]{c} \sqrt [4]{d} \sqrt{c+d x^4} \left (\sqrt{-a} \sqrt{b} \sqrt{c}-a \sqrt{d}\right )}+\frac{\left (\sqrt{c}+\sqrt{d} x^2\right ) \sqrt{\frac{c+d x^4}{\left (\sqrt{c}+\sqrt{d} x^2\right )^2}} \left (\sqrt{-a} \sqrt{d}+\sqrt{b} \sqrt{c}\right ) \Pi \left (-\frac{\sqrt{c} \left (\sqrt{b}-\frac{\sqrt{-a} \sqrt{d}}{\sqrt{c}}\right )^2}{4 \sqrt{-a} \sqrt{b} \sqrt{d}};2 \tan ^{-1}\left (\frac{\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac{1}{2}\right )}{8 \sqrt{b} \sqrt [4]{c} \sqrt [4]{d} \sqrt{c+d x^4} \left (\sqrt{-a} \sqrt{b} \sqrt{c}+a \sqrt{d}\right )} \]

[Out]

(Sqrt[-((b*c - a*d)/(Sqrt[-a]*Sqrt[b]))]*ArcTan[(Sqrt[-((b*c - a*d)/(Sqrt[-a]*Sq
rt[b]))]*x)/Sqrt[c + d*x^4]])/(4*(b*c - a*d)) + (Sqrt[(b*c - a*d)/(Sqrt[-a]*Sqrt
[b])]*ArcTan[(Sqrt[(b*c - a*d)/(Sqrt[-a]*Sqrt[b])]*x)/Sqrt[c + d*x^4]])/(4*(b*c
- a*d)) - (c^(1/4)*d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + S
qrt[d]*x^2)^2]*EllipticF[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(2*(b*c + a*d)*Sqr
t[c + d*x^4]) - ((Sqrt[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])*(Sqrt[c] + Sqrt[d]*x^2)*Sq
rt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticPi[(Sqrt[b]*Sqrt[c] + Sqrt[-a]
*Sqrt[d])^2/(4*Sqrt[-a]*Sqrt[b]*Sqrt[c]*Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/c^(1/4)],
 1/2])/(8*Sqrt[b]*c^(1/4)*(Sqrt[-a]*Sqrt[b]*Sqrt[c] - a*Sqrt[d])*d^(1/4)*Sqrt[c
+ d*x^4]) + ((Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(
c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticPi[-(Sqrt[c]*(Sqrt[b] - (Sqrt[-a]*
Sqrt[d])/Sqrt[c])^2)/(4*Sqrt[-a]*Sqrt[b]*Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/c^(1/4)]
, 1/2])/(8*Sqrt[b]*c^(1/4)*(Sqrt[-a]*Sqrt[b]*Sqrt[c] + a*Sqrt[d])*d^(1/4)*Sqrt[c
 + d*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.963092, antiderivative size = 800, normalized size of antiderivative = 1.22, number of steps used = 5, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125 \[ \frac{\sqrt{-\frac{b c-a d}{\sqrt{-a} \sqrt{b}}} \tan ^{-1}\left (\frac{\sqrt{-\frac{b c-a d}{\sqrt{-a} \sqrt{b}}} x}{\sqrt{d x^4+c}}\right )}{4 (b c-a d)}+\frac{\sqrt{\frac{b c-a d}{\sqrt{-a} \sqrt{b}}} \tan ^{-1}\left (\frac{\sqrt{\frac{b c-a d}{\sqrt{-a} \sqrt{b}}} x}{\sqrt{d x^4+c}}\right )}{4 (b c-a d)}-\frac{\sqrt [4]{d} \left (\sqrt{d} x^2+\sqrt{c}\right ) \sqrt{\frac{d x^4+c}{\left (\sqrt{d} x^2+\sqrt{c}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac{1}{2}\right )}{4 \sqrt{b} \sqrt [4]{c} \left (\sqrt{b} \sqrt{c}-\sqrt{-a} \sqrt{d}\right ) \sqrt{d x^4+c}}-\frac{\sqrt [4]{d} \left (\sqrt{d} x^2+\sqrt{c}\right ) \sqrt{\frac{d x^4+c}{\left (\sqrt{d} x^2+\sqrt{c}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac{1}{2}\right )}{4 \sqrt{b} \sqrt [4]{c} \left (\sqrt{b} \sqrt{c}+\sqrt{-a} \sqrt{d}\right ) \sqrt{d x^4+c}}-\frac{\left (\sqrt{b} \sqrt{c}-\sqrt{-a} \sqrt{d}\right ) \left (\sqrt{d} x^2+\sqrt{c}\right ) \sqrt{\frac{d x^4+c}{\left (\sqrt{d} x^2+\sqrt{c}\right )^2}} \Pi \left (\frac{\left (\sqrt{b} \sqrt{c}+\sqrt{-a} \sqrt{d}\right )^2}{4 \sqrt{-a} \sqrt{b} \sqrt{c} \sqrt{d}};2 \tan ^{-1}\left (\frac{\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac{1}{2}\right )}{8 \sqrt{b} \sqrt [4]{c} \left (\sqrt{-a} \sqrt{b} \sqrt{c}-a \sqrt{d}\right ) \sqrt [4]{d} \sqrt{d x^4+c}}+\frac{\left (\sqrt{b} \sqrt{c}+\sqrt{-a} \sqrt{d}\right ) \left (\sqrt{d} x^2+\sqrt{c}\right ) \sqrt{\frac{d x^4+c}{\left (\sqrt{d} x^2+\sqrt{c}\right )^2}} \Pi \left (-\frac{\sqrt{c} \left (\sqrt{b}-\frac{\sqrt{-a} \sqrt{d}}{\sqrt{c}}\right )^2}{4 \sqrt{-a} \sqrt{b} \sqrt{d}};2 \tan ^{-1}\left (\frac{\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac{1}{2}\right )}{8 \sqrt{b} \sqrt [4]{c} \left (\sqrt{d} a+\sqrt{-a} \sqrt{b} \sqrt{c}\right ) \sqrt [4]{d} \sqrt{d x^4+c}} \]

Warning: Unable to verify antiderivative.

[In]  Int[x^2/((a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

(Sqrt[-((b*c - a*d)/(Sqrt[-a]*Sqrt[b]))]*ArcTan[(Sqrt[-((b*c - a*d)/(Sqrt[-a]*Sq
rt[b]))]*x)/Sqrt[c + d*x^4]])/(4*(b*c - a*d)) + (Sqrt[(b*c - a*d)/(Sqrt[-a]*Sqrt
[b])]*ArcTan[(Sqrt[(b*c - a*d)/(Sqrt[-a]*Sqrt[b])]*x)/Sqrt[c + d*x^4]])/(4*(b*c
- a*d)) - (d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x
^2)^2]*EllipticF[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(4*Sqrt[b]*c^(1/4)*(Sqrt[b
]*Sqrt[c] - Sqrt[-a]*Sqrt[d])*Sqrt[c + d*x^4]) - (d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2
)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*ArcTan[(d^(1/4)*x)/c^(
1/4)], 1/2])/(4*Sqrt[b]*c^(1/4)*(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*Sqrt[c + d*
x^4]) - ((Sqrt[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c +
d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticPi[(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d]
)^2/(4*Sqrt[-a]*Sqrt[b]*Sqrt[c]*Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(
8*Sqrt[b]*c^(1/4)*(Sqrt[-a]*Sqrt[b]*Sqrt[c] - a*Sqrt[d])*d^(1/4)*Sqrt[c + d*x^4]
) + ((Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^
4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticPi[-(Sqrt[c]*(Sqrt[b] - (Sqrt[-a]*Sqrt[d])
/Sqrt[c])^2)/(4*Sqrt[-a]*Sqrt[b]*Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/
(8*Sqrt[b]*c^(1/4)*(Sqrt[-a]*Sqrt[b]*Sqrt[c] + a*Sqrt[d])*d^(1/4)*Sqrt[c + d*x^4
])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 89.6148, size = 711, normalized size = 1.08 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2/(b*x**4+a)/(d*x**4+c)**(1/2),x)

[Out]

-atan(x*sqrt((a*d - b*c)/(sqrt(b)*sqrt(-a)))/sqrt(c + d*x**4))/(4*sqrt(b)*sqrt(-
a)*sqrt((a*d - b*c)/(sqrt(b)*sqrt(-a)))) + atan(x*sqrt((-a*d + b*c)/(sqrt(b)*sqr
t(-a)))/sqrt(c + d*x**4))/(4*sqrt(b)*sqrt(-a)*sqrt((-a*d + b*c)/(sqrt(b)*sqrt(-a
)))) - d**(1/4)*sqrt((c + d*x**4)/(sqrt(c) + sqrt(d)*x**2)**2)*(sqrt(c) + sqrt(d
)*x**2)*elliptic_f(2*atan(d**(1/4)*x/c**(1/4)), 1/2)/(4*sqrt(b)*c**(1/4)*sqrt(c
+ d*x**4)*(sqrt(b)*sqrt(c) + sqrt(d)*sqrt(-a))) - d**(1/4)*sqrt((c + d*x**4)/(sq
rt(c) + sqrt(d)*x**2)**2)*(sqrt(c) + sqrt(d)*x**2)*elliptic_f(2*atan(d**(1/4)*x/
c**(1/4)), 1/2)/(4*sqrt(b)*c**(1/4)*sqrt(c + d*x**4)*(sqrt(b)*sqrt(c) - sqrt(d)*
sqrt(-a))) + sqrt((c + d*x**4)/(sqrt(c) + sqrt(d)*x**2)**2)*(sqrt(c) + sqrt(d)*x
**2)*(sqrt(b)*sqrt(c) + sqrt(d)*sqrt(-a))*elliptic_pi(-sqrt(c)*(sqrt(b) - sqrt(d
)*sqrt(-a)/sqrt(c))**2/(4*sqrt(b)*sqrt(d)*sqrt(-a)), 2*atan(d**(1/4)*x/c**(1/4))
, 1/2)/(8*sqrt(b)*c**(1/4)*d**(1/4)*sqrt(c + d*x**4)*(a*sqrt(d) + sqrt(b)*sqrt(c
)*sqrt(-a))) + sqrt((c + d*x**4)/(sqrt(c) + sqrt(d)*x**2)**2)*(sqrt(c) + sqrt(d)
*x**2)*(sqrt(b)*sqrt(c) - sqrt(d)*sqrt(-a))*elliptic_pi((sqrt(b)*sqrt(c) + sqrt(
d)*sqrt(-a))**2/(4*sqrt(b)*sqrt(c)*sqrt(d)*sqrt(-a)), 2*atan(d**(1/4)*x/c**(1/4)
), 1/2)/(8*sqrt(b)*c**(1/4)*d**(1/4)*sqrt(c + d*x**4)*(a*sqrt(d) - sqrt(b)*sqrt(
c)*sqrt(-a)))

_______________________________________________________________________________________

Mathematica [C]  time = 0.0975071, size = 165, normalized size = 0.25 \[ -\frac{7 a c x^3 F_1\left (\frac{3}{4};\frac{1}{2},1;\frac{7}{4};-\frac{d x^4}{c},-\frac{b x^4}{a}\right )}{3 \left (a+b x^4\right ) \sqrt{c+d x^4} \left (2 x^4 \left (2 b c F_1\left (\frac{7}{4};\frac{1}{2},2;\frac{11}{4};-\frac{d x^4}{c},-\frac{b x^4}{a}\right )+a d F_1\left (\frac{7}{4};\frac{3}{2},1;\frac{11}{4};-\frac{d x^4}{c},-\frac{b x^4}{a}\right )\right )-7 a c F_1\left (\frac{3}{4};\frac{1}{2},1;\frac{7}{4};-\frac{d x^4}{c},-\frac{b x^4}{a}\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[x^2/((a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

(-7*a*c*x^3*AppellF1[3/4, 1/2, 1, 7/4, -((d*x^4)/c), -((b*x^4)/a)])/(3*(a + b*x^
4)*Sqrt[c + d*x^4]*(-7*a*c*AppellF1[3/4, 1/2, 1, 7/4, -((d*x^4)/c), -((b*x^4)/a)
] + 2*x^4*(2*b*c*AppellF1[7/4, 1/2, 2, 11/4, -((d*x^4)/c), -((b*x^4)/a)] + a*d*A
ppellF1[7/4, 3/2, 1, 11/4, -((d*x^4)/c), -((b*x^4)/a)])))

_______________________________________________________________________________________

Maple [C]  time = 0.008, size = 191, normalized size = 0.3 \[{\frac{1}{8\,b}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{4}b+a \right ) }{\frac{1}{{\it \_alpha}} \left ( -{1{\it Artanh} \left ({\frac{2\,{{\it \_alpha}}^{2}d{x}^{2}+2\,c}{2}{\frac{1}{\sqrt{{\frac{-ad+bc}{b}}}}}{\frac{1}{\sqrt{d{x}^{4}+c}}}} \right ){\frac{1}{\sqrt{{\frac{-ad+bc}{b}}}}}}+2\,{\frac{{{\it \_alpha}}^{3}b}{a\sqrt{d{x}^{4}+c}}\sqrt{1-{\frac{i\sqrt{d}{x}^{2}}{\sqrt{c}}}}\sqrt{1+{\frac{i\sqrt{d}{x}^{2}}{\sqrt{c}}}}{\it EllipticPi} \left ( x\sqrt{{\frac{i\sqrt{d}}{\sqrt{c}}}},{\frac{i\sqrt{c}{{\it \_alpha}}^{2}b}{a\sqrt{d}}},{1\sqrt{{\frac{-i\sqrt{d}}{\sqrt{c}}}}{\frac{1}{\sqrt{{\frac{i\sqrt{d}}{\sqrt{c}}}}}}} \right ){\frac{1}{\sqrt{{\frac{i\sqrt{d}}{\sqrt{c}}}}}}} \right ) }} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2/(b*x^4+a)/(d*x^4+c)^(1/2),x)

[Out]

1/8/b*sum(1/_alpha*(-1/((-a*d+b*c)/b)^(1/2)*arctanh(1/2*(2*_alpha^2*d*x^2+2*c)/(
(-a*d+b*c)/b)^(1/2)/(d*x^4+c)^(1/2))+2/(I/c^(1/2)*d^(1/2))^(1/2)*_alpha^3*b/a*(1
-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2)*d^(1/2)*x^2)^(1/2)/(d*x^4+c)^(1/2)*El
lipticPi(x*(I/c^(1/2)*d^(1/2))^(1/2),I*c^(1/2)/d^(1/2)*_alpha^2/a*b,(-I/c^(1/2)*
d^(1/2))^(1/2)/(I/c^(1/2)*d^(1/2))^(1/2))),_alpha=RootOf(_Z^4*b+a))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{2}}{{\left (b x^{4} + a\right )} \sqrt{d x^{4} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^4 + a)*sqrt(d*x^4 + c)),x, algorithm="maxima")

[Out]

integrate(x^2/((b*x^4 + a)*sqrt(d*x^4 + c)), x)

_______________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^4 + a)*sqrt(d*x^4 + c)),x, algorithm="fricas")

[Out]

Timed out

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{2}}{\left (a + b x^{4}\right ) \sqrt{c + d x^{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2/(b*x**4+a)/(d*x**4+c)**(1/2),x)

[Out]

Integral(x**2/((a + b*x**4)*sqrt(c + d*x**4)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{2}}{{\left (b x^{4} + a\right )} \sqrt{d x^{4} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^4 + a)*sqrt(d*x^4 + c)),x, algorithm="giac")

[Out]

integrate(x^2/((b*x^4 + a)*sqrt(d*x^4 + c)), x)